SHELXTL (Siemens, 1994b); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1240). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jin, W. H., Seung, U. S. \& Young, K. C. (1997). J. Org. Chem. 62, 8264-8267.
Kjølberg, O. \& Neumann, K. (1993). Acta Chem. Scand. 47, 843-845.
Lipták, A. \& Fügedi, P. (1983). Angew. Chem. Int. Ed. Engl. 22, 255-256.
Rickard, C. E. F., Woodgate, P. D. \& Zhao, Z. (1998). Acta Cryst. C54, 1420-1424.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994a). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical Instruments Inc., Madison. Wisconsin. USA.
Siemens (1994b). SHELXTL. Release 5.03. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.
Woodgate. P. D., Singh. Y. \& Rickard, C. E. F. (1998). J. Organomet. Chem. 560, 197-209.

Acta Cryst. (1999). C55, 1479-1482

Bis 2 -[1-(thiosemicarbazono)ethyl]pyridinium $\}$ hexakis(nitrato- O, O^{\prime})thorate(IV) tetramethanol solvate

Ulrich Abram, ${ }^{a}$ Elida Bonfada ${ }^{b}$ and Ernesto Schulz Lang ${ }^{b}$
${ }^{a}$ Forschungszentrum Rossendorf, Institut für Radiochemie, Technische Universität Dresden, Institut für Analytische Chemie, D-01062 Dresden, Germany, and ${ }^{b}$ Universidade Federal de Santa Maria, Departamento de Quimica, 97.111 Santa Maria-RS, Brazil. E-mail: abram@fz-rossendorf.de

(Received 9 March 1999; accepted 3 June 1999)

Abstract

Pale yellow crystals of the title compound, $\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{~S}\right)_{2^{-}}$ [$\left.\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 4 \mathrm{CH}_{4} \mathrm{O}$, are formed when thorium nitrate and acetylpyridine thiosemicarbazone are refluxed in methanol. Thorium is 12 -coordinate. The complex anion possesses inversion symmetry. The almost planar 2-[1(thiosemicarbazono)ethyl]pyridinium cations show bond lengths which indicate a considerable delocalization of electron density.

(I)

The metal atom is 12 -coordinate with a coordination sphere which can be described as a distorted icosahedron with 12 isosceles and eight equilateral triangles forming the surface of the coordination polyhedron (Fig. 1). The metal is located on a centre of inversion. With this, the structure of the anion comes close to the $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$ anion (without inversion, but with approximate C_{2} symmetry) in tris-2, 2^{\prime}-bipyridinium nitrate hexanitratothorate(IV) (Khan et al., 1984) and in

Comment

Heterocyclic thiosemicarbazones, as well as their metal complexes, are currently under discussion because of their biological activity (West et al., 1990, and references therein). Although a number of studies dealing with complex-formation properties exists (West et al., 1990, and references therein; Garg et al., 1988, and references therein), comparatively few structural reports have been published (Abram et al., 1998). Studies on reactions of heterocyclic thiosemicarbazones with actinides have not yet been reported. As part of our systematic studies on the complex-formation properties of tri- and pentadentate thiosemicarbazones, we investigated the reaction of 2-acetylpyridine thiosemicarbazone (HAPTSC) with thorium(IV) nitrate.

Heating of $\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ with excess HAPTSC in methanol results in the formation of $\left(\mathrm{H}_{2} \text { ATPSC }\right)_{2^{-}}$ [$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}$], which crystallizes upon concentration of the reaction mixture. In this compound, thorium does not form any bonds to the thiosemicarbazone. In the remaining filtrate, however, a thorium thiosemicarbazonato complex of the tentative composition [Th (APTSC)-$\left.\left(\mathrm{OH}_{2}\right)\left(\mathrm{NO}_{3}\right)_{2}\right]^{-}$could be detected by a fast-atom bombardment (FAB^{-}) mass spectrometry peak of reasonable intensity at $m / z=583$. All attempts to isolate and crystallize this complex have failed up to now. The structure of $\left(\mathrm{H}_{2} \mathrm{APTSC}\right)_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 4 \mathrm{MeOH}$, (I) (Fig. 1), consists of a discrete complex anion and two acetylpyridinium thiosemicarbazone cations. Reasonable hydrogen bonds are only formed between the cations and the cocrystallized solvent, and between the two methanol molecules. Only one very weak hydrogen bond may be attributed between N12 and O33 ${ }^{\text {i }}$ of the complex anion [N12-H12 $0.82(5), \mathrm{H} 12 \cdots \mathrm{O} 33^{\mathrm{i}}$ 2.32 (5), N12 . O O33 3.095 (4) \AA and N12-H12-O O33 $158(4)^{\circ}$; symmetry code: (i) $\left.x, y+1, z\right]$ (see Fig. 2).

Fig. 1. An ellipsoid representation (Zsolnai, 1995; 50\% probability) of (I).

Fig. 2. The hydrogen-bonding scheme in (I) (Spek, 1998a).
$\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{Me} 3 \mathrm{PO}_{4}\right)_{4}\right]\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$ (Alcock et al., 1977), and is in contrast to the asymmetric complex anions in $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Š́áavičar \& Prodić, $1965)$ and $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{tdpo})_{4}\right]_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right][$ tdpo is tris(dimethylamido)phosphine oxide] (English et al., 1979). In two more recent papers, the $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$ anion is described as nearly regular icosahedral (Ming et al., 1988; Aparna et al., 1995) and comparable with [Ce-
$\left.\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$ in $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right]$ (Beineke \& Delgandio, 1968).

The distortions in the ThO_{12} icosahedron in the title compound are mainly established by the $\mathrm{O}-\mathrm{Th}-\mathrm{O}$ angles, which deviate significantly from the situation in a regular icosahedron where $\mathrm{O}-\mathrm{Th}-\mathrm{O}$ angles of 63.5 (five such), 116.5 (five such) and 180° (one such) for each specific O atom are expected. The experimental results show $\mathrm{O}-\mathrm{Th}-\mathrm{O}$ angles in the ranges 49.5-49.9 (one such), 67.1-68.3 (four such), 111.7-112.9 (four such) and 130.1-130.5 (one such), and an angle of 180° (one such, by symmetry) for any individual O atom. All $\mathrm{Th}-\mathrm{O}$ bond lengths lie randomly in the range 2.553 (3) -2.580 (3) \AA. The second coordination sphere of thorium is an almost regular octahedron, with ThN distances between 2.996 (5) and 3.007 (5) \AA, and a maximum deviation of the $\mathrm{N}-\mathrm{Th}-\mathrm{N}$ angles from 90° of 1.58°.

The H_{2} APTSC counter-ions are protonated at the N atoms of the pyridine ring, as could be derived from the structure determination. The bonding situation in the organic molecule comes close to that in the hydrochloride of the thiosemicarbazone despite the latter being aggregated to form dimers in the solidstate structure via hydrogen bonds (Abram \& Abram, 1997). The molecule is almost planar, with a maximum deviation from a least-squares plane including all non -H atoms of 0.034 (4) \AA (r.m.s. deviation of the fitted atoms: $0.0212 \AA$). The Cl1-S13 distance of $1.681(3) \AA$ is intermediate between typical C - S single- and doublebond lengths. This agrees well with the C11-N 10 and $\mathrm{C} 11-\mathrm{N} 12$ bond lengths of 1.361 (4) and 1.316 (5) \AA which indicate partial double-bond character. The C7N9 bond $[1.283(4) \AA$) is significantly shorter than a $\mathrm{C}-\mathrm{N}$ single bond, as can be expected for a thiosemicarbazone.

Experimental

$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}(55 \mathrm{mg}, 0.1 \mathrm{mmol})$ was suspended in MeOH (approximately 20 ml) and a solution of HAPTSC (48 mg , 0.25 mmol) in MeOH (10 ml) was added. The mixture was refluxed for 30 min . During this time, $\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}$ dissolved and a clear yellow solution was obtained. Upon concentrating and cooling, pale yellow crystals of $\left(\mathrm{H}_{2} \mathrm{APTSC}\right)_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$ deposited [yield 45 mg (40% based on Th)]. IR: (NH) 3452, 3293, $3107 \mathrm{~cm}^{-1},(\mathrm{C}=\mathrm{N}) 1615,1565 \mathrm{~cm}^{-1}$, (NO_{3}^{-}) 1505 , 1293, 1035, $805 \mathrm{~cm}^{-1}$. FAB^{+}MS: $\mathrm{m} / \mathrm{z} 194^{\prime}\left(\left[\mathrm{H}_{2}\right.\right.$ APTSC $\left.^{+}\right)$. Elemental analysis found: C $21.30, \mathrm{H} 2.95, \mathrm{~N} 17.78, \mathrm{~S} 5.51 \%$; calculated for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{~N}_{14} \mathrm{O}_{22} \mathrm{~S}_{2}$ Th: C 21.45, H 3.04, N 17.52 , S5.72\%.

Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{~S}\right)_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$-- Mo $K \alpha$ radiation

$4 \mathrm{CH}_{4} \mathrm{O}$

$M_{r}=1122.80$
Triclinic
$P \overline{1}$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 3
reflections
$\theta=9.83-14.90^{\circ}$

$a=9.070$ (3) \AA 。	$\mu=3.830 \mathrm{~mm}^{-1}$
$b=10.974$ (5) \AA	$T=208(2) \mathrm{K}$
$c=12.102(4) \AA$	Plate
$\alpha=64.85$ (3) ${ }^{\circ}$	$0.30 \times 0.30 \times 0.10 \mathrm{~mm}$
$\beta=71.36$ (3) ${ }^{\circ}$	Yellow
$\gamma=76.37(3)^{\circ}$	
$V=1026.2(6) \AA^{3}$	
$Z=1$	
$D_{x}=1.817 \mathrm{Mg} \mathrm{m}^{-3}$	
D_{m} not measured	
Data collection	
Enraf-Nonius CAD-4 diffractometer	4435 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.025$
Absorption correction:	$\theta_{\text {max }}=26.98^{\circ}$
ψ scan (PLATON; Spek,	$h=-1 \rightarrow 11$
1998a)	$k=-13 \rightarrow 13$
$T_{\text {min }}=0.437, T_{\text {max }}=0.978$	$l=-14 \rightarrow 15$
5315 measured reflections	3 standard reflections
4460 independent reflections	every 300 reflections intensity decay: none
Refinement	
Refinement on F^{2}	$(\Delta / \sigma)_{\text {max }}=0.002$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$	$\Delta \rho_{\text {max }}=1.020 \mathrm{e}_{\AA^{-3}}$
$w R\left(F^{2}\right)=0.061$	$\Delta \rho_{\text {min }}=-1.015 \mathrm{e}^{\AA^{-3}}$
$S=1.057$	Extinction correction: none
4460 reflections	Scattering factors from
344 parameters	International Tables for
All H atoms refined $w=1 /\left[\sigma^{2}\left(F^{2}\right)+(0.0389 P)^{2}\right.$	Crystallography (Vol. C)
$\begin{aligned} w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0389 P)^{2}\right. \\ & +0.0391 P] \end{aligned}$	
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{cq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Th	0	0	0	0.02360 (6)
N20	0.1656 (4)	0.0742 (3)	0.1373 (3)	0.0354 (6)
O21	0.2398 (3)	0.0354 (3)	0.0457 (2)	0.0339 (5)
O 22	0.0175 (3)	0.0898 (3)	0.1587 (2)	0.0377 (5)
O23	0.2346 (4)	0.0940 (3)	0.1976 (3)	0.0536 (8)
N30	0.0160 (3)	-0.2851 (3)	0.1926 (3)	0.0324 (6)
O31	-0.0479 (3)	-0.2497 (2)	0.1024 (2)	0.0348 (5)
032	0.0704 (3)	-0.1922 (3)	0.1982 (2)	0.0358 (5)
O 33	0.0246 (4)	-0.4011 (3)	0.2679 (3)	0.0483 (7)
N40	-0.3055 (3)	0.0731 (3)	0.1620 (3)	0.0358 (6)
O41	-0.2430 (3)	0.1582 (3)	0.0541 (2)	0.0373 (5)
042	-0.2334 (3)	-0.0460 (3)	0.1926 (2)	0.0368 (5)
043	-0.4251 (3)	0.1043 (3)	0.2297 (3)	0.0561 (8)
N1	0.2631 (4)	0.4791 (3)	0.8229 (3)	0.0338 (6)
C2	0.2090 (5)	0.5394 (5)	0.9060 (4)	0.0477 (10)
C3	0.2595 (7)	0.4872 (5)	1.0141 (4)	0.0625 (13)
C4	0.3660 (7)	0.3734 (6)	1.0338 (4)	0.0621 (13)
C5	0.4229 (6)	0.3136 (4)	0.9462 (4)	0.0456 (9)
C6	0.3696 (4)	0.3692 (3)	0.8379 (3)	0.0312 (7)
C7	0.4253 (4)	0.3153 (3)	0.7368 (3)	0.0283 (6)
C8	0.5462 (5)	0.1945 (4)	0.7489 (4)	0.0417 (9)
N9	0.3631 (3)	0.3836 (3)	0.6433 (2)	0.0283 (5)
NIO	0.4083 (4)	0.3437 (3)	0.5440 (3)	0.0307 (6)
Cll	0.3404 (4)	0.4116 (3)	0.4456 (3)	0.0284 (6)
N12	0.2350 (4)	0.5155 (3)	0.4515 (3)	0.0392 (7)
S13	0.39680 (11)	0.36056 (10)	0.32408 (8)	0.0382 (2)
O50	0.8471 (3)	0.3330 (3)	0.3817 (3)	0.0429 (6)

C51	$0.9980(6)$	$0.2673(6)$	$0.3956(9)$	$0.0757(18)$
O60	$0.6503(3)$	$0.1458(3)$	$0.4584(3)$	$0.0413(6)$
C61	$0.7193(7)$	$0.0093(5)$	$0.4840(5)$	$0.0535(11)$

Table 2. Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$

Th—O42	$2.553(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.477(4)$
$\mathrm{Th}-\mathrm{O} 21$	$2.556(2)$	$\mathrm{C} 7-\mathrm{N} 9$	$1.283(4)$
$\mathrm{Th}-\mathrm{O} 41$	$2.558(3)$	$\mathrm{N} 9-\mathrm{N} 10$	$1.361(4)$
$\mathrm{Th}-\mathrm{O} 31$	$2.562(3)$	$\mathrm{N} 10-\mathrm{C} 11$	$1.361(4)$
$\mathrm{Th}-\mathrm{O} 32$	$2.580(3)$	$\mathrm{C} 11-\mathrm{N} 12$	$1.316(5)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.341(5)$	$\mathrm{C} 11-\mathrm{S} 13$	$1.681(3)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$118.2(3)$	$\mathrm{C} 11-\mathrm{N} 10-\mathrm{N} 9$	$119.4(3)$
$\mathrm{N} 9-\mathrm{C} 7-\mathrm{C} 6$	$113.5(3)$	$\mathrm{N} 12-\mathrm{C} 11-\mathrm{N} 10$	$117.1(3)$
$\mathrm{C} 7-\mathrm{N} 9 — \mathrm{~N} 10$	$118.3(3)$	$\mathrm{N} 10-\mathrm{C} 11-\mathrm{S} 13$	$118.8(3)$

Table 3. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

D- $\mathrm{H} \cdot \cdots A$	D-H	H \cdots A	D. . A	D-H. . A
N1-H1 . ${ }^{\text {O }}$ O ${ }^{1}$	0.80 (4)	2.00 (4)	2.767 (4)	162 (4)
N10-H10 . O 60	0.83 (5)	2.20 (5)	2.970 (4)	153 (4)
N12-H12A...O33 ${ }^{\prime \prime}$	0.82 (5)	2.32 (5)	3.095 (4)	158 (4)
N12-H12B. . O50 ${ }^{\text {² }}$	0.87 (5)	2.11 (5)	2.950 (4)	163 (4)
O50-H50 . O60	0.79 (5)	1.92 (5)	2.705 (4)	180 (6)
O60-H60 . - Sl3	0.76 (5)	2.54 (5)	3.172 (3)	143 (5)

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x, 1+y, z$.
C-H distances are in the range 0.77 (7)-1.08 (9) \AA.
Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: SET4 in CAD-4 Software. Data reduction: PLATON (Spek, 1998a) and HELENA (Spek, 1998b). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b). Molecular graphics: ZORTEP (Zsolnai, 1995). Software used to prepare material for publication: SHELXL97.

We thank Professor Joachim Strähle (University of Tübingen) for providing the opportunity for the present data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1328). Services for accessing these data are described at the back of the journal.

References

Abram, S. \& Abram, U. (1997). Acta Cryst. C53, 360-362.
Abram, S., Maichle-Mössmer, C. \& Abram, U. (1998). Polyhedron, 17, 131-143.
Alcock, N. W., Esperas, S., Bagnall, K. W. \& Hsian-Yun, W. J. (1977) J. Chem. Soc. Dalton Trans. pp. 638-646.

Aparna, K., Krishnamurthy, S. S. \& Nethaji, M. (1995). J. Chem. Soc. Dalton Trans. pp. 2991-2997.
Beineke, T. A. \& Delgandio, J. (1968). Inorg. Chem. 7, 715-722.
English, R. P., du Preez, J. G. H., Nassimbeni, L. R. \& van Vuuren, C. P. J. (1979). S. Afr. J. Chem. 32, 119-125.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Garg, B. S., Kurup, M. R. P., Jain, S. K. \& Bhoon, Y. K. (1988). Transition Met. Chem. 13, 247-255.
Khan, M. A., Kumar, N. \& Tuck, D. G. (1984). Can. J. Chem. 62, 850-855.
Ming, W., Boyi, W., Peiju, Z., Wenji, W. \& Jie, L. (1988). Acta Cryst. C44, 1913-1916.
Šćavničar, S. \& Prodić, B. (1965). Acta Cryst. 18, 698-702.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Spek, A. (1998a). PLATON. Molecular Geometry Program. University of Utrecht, The Netherlands.
Spek, A. L. (1998b). HELENA. Program for Data Reduction. University of Utrecht, The Netherlands.
West, D. X., Carlson, C. S., Galloway, C. P., Liberta, A. E. \& Daniel. C. R. (1990). Transition Met. Chem. 15, 43-87.

Zsolnai, L. (1995). ZORTEP. Program for the Presentation of Thermal Ellipsoids. University of Heidelberg, Germany.

Acta Cryst. (1999). C55, 1482-1483

Chloro(p-chloroanilido- N)bis $\left(\eta^{5}\right.$-pentamethylcyclopentadienyl)uranium(IV)

R. Gregory Peters, Brian L. Scott and Carol J. Burns

Los Alamos National Laboratory, Los Alamos, NM 87545, USA. E-mail: cjb@lanl.gov
(Received 5 January 1999: accepted 21 May 1999)

Abstract

The title complex, $\left[\mathrm{UCl}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ClN}\right)\right]$, adopts the pseudo-tetrahedral geometry typical for bis(pentamethylcyclopentadienyl)uranium complexes, with a chloride and a para-substituted amide ligand occupying the plane bisecting the metallocene unit. Some important bond lengths include $\mathrm{U}-\mathrm{N} 2.237$ (3) and U-Cl 2.613 (1) Å.

Comment

We have been examining the chemistry of uranium mono- and dialkyls with substituted anilines as a synthetic tool to yield mono and bis amide and imide complexes of actinides. Treatment of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}$ with an excess of p-chloroaniline in hexane solution gave the title compound, (I), in modest yield.

(I)

In the solid state, the title molecule adopts a typical metallocene geometry, with an average M - $\mathrm{C}_{\text {ring }}$ bond length of $2.736 \AA$. This value is well withing
the range typically found in bis(pentamethylcyclopentadienyl)uranium(IV) complexes (Arney et al., 1992; Hall et al., 1993; Arney \& Burns, 1995). The $C p-M-C p$ angle of 135.1° ($C p$ is the ring centroid) falls within the range of $132-141^{\circ}$ reported for similar uranium(IV) structures (Arney \& Burns, 1995; Arney et al., 1992). The $\mathrm{U}-\mathrm{Cl}$ bond length of 2.613 (1) \AA is about $0.04 \AA$ shorter than the $\mathrm{U}-\mathrm{Cl}$ distance of $2.658(2) \AA$ reported for $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}\left[\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2}\right) \mathrm{P}(\mathrm{Me})(\mathrm{Ph})\right] \mathrm{Cl}$ (Cramer et al., 1989), possibly reflecting the increased electron density in the title compound. However, the $\mathrm{U}-\mathrm{Cl}$ bond length of the title compound is longer than the UCl distance of $2.583(6) \AA$ reported for the dichloride $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2}$ (Spirlet et al., 1992). The U-N distance of $2.237(3) \AA$ is shorter than the $\mathrm{U}-\mathrm{N}$ bond distance of 2.267 (6) A reported for $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}[\mathrm{NH}(2,6-$ $\left.\left.\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right]_{2}$ (Straub et al., 1996). These differences in bond-length data qualitatively indicate that uranium(IV) complexes are structurally sensitive to the electronic and steric influences of the ancillary ligands.

Fig. 1. View of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. H atoms. except for the amide H atom, have been omitted for clarity. The C_{5} Mes ring (C31-C35A) is disordered over two positions and only the major component is shown.

Experimental

The title compound was prepared by treatment of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}-$ $\mathrm{U}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}$ with p-chloroaniline in hexane. The crude product was isolated by filtration of the reaction mixture, and recrystallization from a saturated hexane solution at 238 K yielded the pure product as dark-red blocks.

Crystal data

$\left[\mathrm{UCl}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ClN}\right)\right]$
Mo $K \alpha$ radiation
$M_{r}=670.48$
$\lambda=0.71073 \AA$

